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Vibrations of systems with instantaneous or stepwise energy losses, e.g., due to impacts
with imperfect rebounds, dry friction forces(s) (in which case the losses may be treated as
instantaneous ones by appropriate introduction of the response energy) and/or active
feedback &&bang}bang'' control of the systems' response are considered. Response of such
(non-linear) systems to a white-noise random excitation is considered for the case where
there are no other response energy losses. Thus, a simple linear energy growth with time
between &&jumps'' is observed. Explicit expressions for the expected response energy are
derived by direct application of the stochastic di!erential equations calculus, which contains
the expected time interval between two consecutive jumps. The latter may be predicted as
a solution to the relevant "rst-passage problem. Perturbational analysis of the relevant PDE
for this problem for a certain vibroimpact system demonstrated the possibility for using the
solution to the corresponding free vibration problem as a zero order approximation. The
method is applied to an s.d.o.f. system with a feedback inertia control, designed according to
a certain previously introduced &&generalized reversed swings law''. Extensive Monte-Carlo
simulation results are presented for this system as well as for several previously analyzed
ones: system with impacts; system with dry friction; system with sti!ness control; pendulum
with controlled length. The results are compared with those due to the asymptotic stochastic
averaging approach. Both methods are shown to provide adequate accuracy far beyond the
expected applicability range of the asymptotic approach (which requires both excitation
intensity and losses to be small), with direct energy balance being generally superior.

( 2001 Academic Press
1. INTRODUCTION AND OUTLINE OF THE APPROACH

The name &&piecewise-conservative'' is used in this paper for vibrating systems with stepwise
"nite energy losses, which appear at discrete time instants only. A typical example is
a vibroimpact system with the dominant mechanism of energy loss being impacts with
imperfect rebounds. Another example is a system with externally imposed instantaneous
stepwise variations, or &&jumps'', of parameters, which can either bring in or carry away the
system's energy (pendulum clocks, swings, etc.). It may be added that certain
non-conservative systems may be treated as piecewise-conservative ones. An example is
a single-degree-of-freedom (s.d.o.f ) system with dry friction, or a resistance force of
a constant magnitude with its direction being always opposite to that of the system's
velocity. By including work of this force into the system's total energy, one can describe
sPresent address: Mechanical Engineering Department, College of Engineering, University of Miami, P.O. Box
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energy losses in vibration as being instantaneous, corresponding to reversals of velocity.
The described kind of phenomena may also be observed in systems with active control of
a &&bang}bang'' type, whereby the available control force, as developed by an actuator,

is of a bounded magnitude; the optimal bounded control law is usually obtained as
a sequence of &&switches'' between the given bounds.

These losses make the vibrating systems non-linear in general, as long as the instants of
stepwise variations are not known in advance but rather are governed by the equations
of motion. This non-linearity greatly complicates analyses of the systems' response to
a random excitation. Even for an s.d.o.f. system such an analysis requires either the use of
some moment closure scheme, or the use of the stochastic averaging approach, which is
valid only for small energy losses and excitation intensity.

An alternative method for response prediction had been proposed in reference [1] for an
s.d.o.f. vibroimpact system, subjected to a white-noise excitation. The method is based on
a direct balance of the expected response energy. A stochastic di!erential equation (SDE)
ofor the total response energy H(t) is derived from the original equation of motion.
A conditional averaging is "rst applied to this SDE, denoted by bar, the condition being the
initial value of H at the start of a certain response cycle. This results in the deterministic
ODE HMQ "D/2, with D being the intensity of the white-noise excitation, thereby implying
linear growth of the (conditional) expected response energy with time. After deducting
a properly evaluated energy loss within the cycle, the conditional expectation of energy at
the start of the next cycle can be evaluated. (The actual value of energy at this instant will be
random.) The concept of a &&cycle'' is problem-dependent, of course, but it is unambiguously
de"ned by "nite relation(s), which control the instantaneous energy losses. Thus, in case of
a vibroimpact system with a single rigid barrier the cycle corresponds to a time interval
between two consecutive rebounds (or impacts).

The above procedure results in a random sequence of values of H at the starting instants
of various cycles. The unconditional averaging is applied then to this sequence, i.e.,
averaging over all response cycles, as denoted by angular brackets. As long as a stationary
sequence has a constant mean value, the mean net energy increment per cycle should be
zero. This results in a simple energy-balance relation:

SDHT"D¹/2, (1)

where the LHS is a total mean energy loss per cycle. It is related to the system's energy
and/or other state variables by the speci"c equation for energy loss for a given problem. The
RHS is the mean energy input per cycle, with ¹ being the expected duration of the cycle. It
can be identi"ed as the solution to the relevant "rst-passage problem for the
response*namely, as an expected time to arrive at the starting point of the next response
cycle after the start of the present cycle with energy H. This (conditionally) expected time
satis"es the relevant generalized Pontryagin equation [2], which had been identi"ed and
analyzed in reference [1] for the corresponding vibroimpact system. Solution ¹ (H) to this
PDE, which is to be used in the exact (by itself ) relation (1), with H replaced by its
unconditional mean value, is the challenging part of the approach. It may be added that, in
general, ¹ may also be present in the LHS of relation (1); this will be the case where the
magnitude of the energy drop depends not only, say, on the initial energy of the cycle, but on
the instantaneous energy as well.

A perturbational analysis of the second order PDE for ¹ (H) has been made in reference
[1], with the excitation intensity D regarded as a small parameter. In a zero order
approximation, D"0, the PDE is of reduced ("rst) order, and its exact solution is just the
system's natural half-period, or ¹"n/X, where X is the system's natural frequency. As long
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as the solution satis"es both boundary conditions for the original PDE, this is the case of
regular rather than singular perturbations. Thus, the solution for the deterministic cycle
duration ¹ of the system without excitation may naturally be used in relation (1). Of course,
this would imply that the predictions are approximate only for not-very-small D's. It may be
speculated, however, that their accuracy should be higher than those of the asymptotic
stochastic averaging*as the latter requires not only small variations of the response period,
but also small variations of the response energy per cycle (and thus, small losses). This
general expectation had been con"rmed in reference [1] for the vibroimpact system by
direct Monte-Carlo simulation.

Thus, the energy balance approach may provide better accuracy than the asymptotic one
whenever the system's losses and excitation level are not very small, and a single expected
value of a certain response characteristic is adequate for a given application*for example,
to evaluate the e$ciency of a &&bang}bang'' control. The type of response characteristic to be
obtained from relation (1) is problem-dependent. For example, the expected response
energy is predicted in four of the "ve speci"c problems considered in this paper, whereas the
expected response amplitude, or peak value of the displacement, is predicted in the "fth one.
The superior accuracy of the energy balance approach is demonstrated, by an extensive
Monte-Carlo simulation, for all these "ve problems (previously, it has been done only for
a vibroimpact system with zero o!set of the barrier). Relation (1) is shown to provide
reasonable results far beyond the applicability range of the stochastic averaging. Actually,
establishing the range of applicability of the energy balance method is the main purpose of
this paper.

The possibility for extending this approach to systems with non-linear restoring forces
should also be mentioned here. Introducing a relevant potential energy function, one can
obtain the same linear growth law for the corresponding total energy, leading eventually to
the same energy-balance equation (1) for the steady state response. The di!erence for the
non-linear case is in the RHS of this equation, where ¹ should now depend on H, that is, on
the instantaneous starting energy value of the response cycle, even if it is predicted
approximately as a natural cycle duration for a system without random excitation. For
a slightly non-linear system with smooth non-linearity, with ¹(H) being linear in H, the
linear part may be included into the RHS of equation (1), together, with the constant one
[3]. As long as the energy loss in the LHS depends on the same H, the mean response energy
can be predicted indeed. (In general, however, the functions of H in two sides of equation (1)
may appear to be di!erent, thereby precluding the desired estimate without independent
information on the relation between these functions.)

Thus, this paper provides the following:

(1) Results of extensive Monte-Carlo simulations, evaluating accuracy of the method; in
general, it was found to be reasonably good beyond the supposed limits for applicability
of the asymptotic stochastic averaging approach for not-too-small values of the
supposedly small parameter(s).

(2) Analytical solution to certain new random vibration problems by the method of direct
energy balance*namely, for a system with &&bang}bang'' control of its moment of
inertia and for a vibroimpact system with non-zero o!set of the barrier.

2. VIBROIMPACT SYSTEM

As a "rst example, consider an s.d.o.f. mass}spring system, with a rigid barrier installed
with an o!set h from the system's static equilibrium position. The equations of motion
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between impacts may then be written as

yR "l, l5 "!X2y#1(t) for y'!h. (1a)

Thus, positive and negative values of h may imply, say, pretension and slack, respectively, in
the mooring line of a #oating moored body as excited by ocean waves. The excitation 1(t) is
assumed here, as well as in all other examples in this paper, to be a zero-mean stationary
Gaussian random white noise. Its intensity is denoted here by D. The impact/rebound
condition, which should be satis"ed at time instants t

*
, when y"!h, may be written, by

introducing a restitution factor r, as

l
`
"!rl

~
, l

$
"l(t

*
$0), y (t

*
)"!h, 0(r)1. (2)

Introducing the total response energy H(t) as

H"yR 2/2#;(y), ;(y)"X2y2/2, HQ "yR (yK#X2y)"l1(t) (3)

and applying conditional averaging for a given H(0), yields, according to the basic SDE
calculus [2, 4],

HMQ "D/2, HM (t)"H (0)#Dt/2. (4)

The energy evolution equation (4) may be applied to predict response energy at impact as
well as conditional mean square impact velocity.

HM (t
*
!0)"H (0)#Dt

*
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~
"2H(0)#Dt
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*
, H

*
";(!h)"X2h2/2.

(5)

The impact/rebound condition (2) is applied now to obtain mean square rebound velocity
and response energy after rebound*that is, at the start of the next cycle:

l6 2
`
"r2l6 2

~
, HM (t

*
#0)"r2 [H (0)#Dt

*
/2!H

*
]#H

*
. (6)

The unconditional averaging as denoted by angular brackets is applied now to relation (6).
Imposing then the stationary condition for the expected energy at the start of a cycle yields
the following reduced energy-balance relation:

SH(0)T"SHM (¹#0)T, ¹"St
*
T, SH(0)T"H

*
#

r2 (D¹/2)

1!r2
. (7)

The unconditional mean square impact velocity can be found now, using equations (5) and
(7), as

Sl2
~

T"2(H(0)!H
*
)"D¹/(1!r2). (8)

This result is the same as that obtained in reference [1] for the case h"0. Of course, in
general, the o!set of the barrier h cannot but in#uence the response through the value of ¹.
The cycle duration¹ in this work is approximated by the system's natural period. The latter
can be easily obtained from equation (1a) with 1 (t),0 as [4]

¹ (H)"n/X#(2/X)sin~1 JH
*
/H"n/X#(2/X)sin~1(Xh/J2H). (9)

Thus, solution (8) is meaningful for su$ciently small h only, which leads to negligibly small
variations of ¹ due to the second term in expression (9). Thus, the system (1a) and (2), should
be quasi-isochronous, although it should still be regarded s a strongly non-linear one.

It is interesting to compare the &&exact'' mean square velocity (8) (quotation marks are
applied since the exact value of ¹ is not available at present) with its limiting value for the
case of small impact losses, i.e.,

Sl2
~

T
AS

"lim
r?1

Sl2
~
T"D¹/[2(1!r)]. (8@)
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The latter expression can also be obtained by applying the asymptotic stochastic averaging
method to the SDE (1a) with impact condition (2), as described in reference [1, 4].
Therefore, it should be valid only for values of 1!r, proportional to a small parameter.
Actually, both &&exact'' and approximate solutions, (8) and (8@), respectively, rely on the
approximation of the cycle duration by the system's natural period; therefore, they are
based on the assumption of small D, and thus (implicitly) on that of small impact losses.
However, Monte-Carlo simulations for the case h"0 demonstrated a good accuracy of the
energy-balance approach down to values r"0)7 [1]. (Actually, the expected response
energy was predicted with a good accuracy by this approach with ¹"n/X even for r"0)6,
the corresponding expected cycle duration was found to be rather lower than the natural
period at such a high level of impact loss. Also they were certainly found to be superior to
the asymptotic results for not-too-small values of 1!r. In other words, the superior
convergence rate of the energy-balance approach has been con"rmed indeed, for this
example, compared with the asymptotic approach, which requires small energy variations
per cycle.

Thus, in this example, the energy-balance approach provides certain reasonably accurate
predictions of the random response far beyond the applicability range of the asymptotic
stochastic averaging method. The derived formula for mean response energy at time instant
¹/2 was used, in particular, to obtain an improved &&equivalent'' viscous damping ratio
a
eq
"(X/n)(1!r2)/(1#r2) to account for impact losses [1].

3. SYSTEM WITH DRY FRICTION

Consider now an s.d.o.f. system with Coulomb, or dry-friction damping, as governed by
the following equation of motion:

xK#R sgnxR #X2x"1(t),

where

R'0 and sgn x"#1 for x'0, sgn x"!1 for x(0. (10)

This equation may also appear for a system with active response control, whenever
magnitude of the control force is bounded [5], as long as the dry-friction control law is
found to be the optimal one to reduce the steady state expected response energy SHT.
Namely, replacing the second term in the LHS of equation (10) by any other control law
u(x, xR , t) with Du D)R may only increase SHT [5].

Introducing the response energy H, equation of motion (10) may be rewritten in
a space-state form as follows:

xR
1
"x

2
, xR

2
"!X2x

1
!R sgnx

2
#1 (t),

H"(1/2)(X2x2
1
#x2

2
), HQ "!R Dx

2
D#x

2
1(t). (11)

A conditional averaging is applied to this set of &&physical'' or Stratonovich SDEs denoted
by bar, with the condition being the given values of state variables at a certain selected time
instant. Using the Wong-Zakai correction for H(t) yields

HMQ "!R Dx
2
D#D/2. (12)

The ODE (12) may be integrated directly within any time interval that does not contain
reversals of velocity. The resulting variation of the conditional mean energy will be



TABLE 1

Non-dimensional expected response amplitudes SATX2/R for various values of the

non-dimensional 00dry-friction11 force k"R/JDX

k"1)414 k"1)0 k"0)8 k"0)5 k"0)2

Analytical 0)3927 0)7854 1)2272 3)1416 19)635
Numerical 0)3353 0)7118 1)141 3)0788 19)58
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!Rs#Dt/2, where s is the traversed distance. Let this distance be just the instantaneous
range x

peak
}x

trough
, denoted as 2A, or the doubled-response amplitude, where the initial and

"nal instant of time correspond to the pair of consecutive trough and peak of x (t). Then the
unconditional averaging for steady state response results in

SDHM T"!2RSAT#D¹/2:!2RSAT#Dn/2X"0 (13)

so that SAT:Dn/4XR.
Here, ¹ is the expected value of the time interval between the consecutive trough and

peak, which once again is approximated here by the system's natural half-period. The
resulting expression for the expected response amplitude is found to be the same as that
obtained by stochastic averaging [5]. However, its range of applicability should not be
restricted by the condition for small D and R, as long as the energy-balance approach does
not require the variations of energy to be small within any response cycle. It should be
added, that the stochastic averaging method has its advantage in that it permits to predict
probability density of the response and also estimates the system's reliability with respect to
the "rst-passage failure*see reference [5] for such analyses for system (10).

Table 1 presents numerical (Monte-Carlo) simulation data for the expected response
amplitude, normalized with respect to the &&dead zone'' D"R/X2. These data are compared
with calculations according to the energy-balance formula (13), which yields

SAT/D"n/4k2, where k"R/JDX is a non-dimensional parameter of the &&dry-friction''
force. The agreement is observed to be very good for values of k, which are small compared
with unity. It is also reasonably good for values of the order of unity*that is, far beyond the
expected range of applicability of the asymptotic methods. (In actual numerical simulations,
values D"1 and X"1 were assigned, whereas R was varied.)

4. SYSTEMS WITH THE GENERALIZED REVERSED SWINGS CONTROL

In this section, two externally excited s.d.o.f. systems are considered that are controlled
through their parameter variation: a basic mass}spring system

(d/dt) (JhQ )#kh"1 (t) (14)

and a pendulum

(d/dt) (¸2hQ )#g¸h"!¸1(t). (15)

The cases of feedback-controlled temporal variations of inertia J and of sti!ness k will be
considered for the "rst of these systems, whereas pendulum (15) will be controlled through
imposed variations of its length ¸. The following law of the feedback-controlled variations
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will be considered for all three cases:

q (t)"q
0

[1#R sgn(hhQ )] 0(R(1; R"(q
`
!q

~
)/(q

`
#q

~
), (16)

where plus and minus subscripts are applied to the maximal and minimal values,
respectively, of the positive unifying parameter q. The latter may be the pendulum's length
¸(t); or sti!ness k (t) or moment of inertia J (t) of the s.d.o.f system (15) (dependence of the
feedback-controlled parameters on the state variables is not shown explicitly just for
brevity).

Equation (15) with zero RHS and q"¸ is reduced to that of a person on swings if the
term with R in equation (16) is taken with the opposite sign [6, 7]. Thus, the control law (16)
was introduced in reference [6] as a &&generalized reversed swings law'', and this name has
been used for s.d.o.f. system (14) as well (which has nothing to do with swings), just to
describe the timing for stepwise variations of parameters. This law has been shown in
reference [3] to be the optimal one for the so-called &&long-term'' response control for system
(14) in case q"k, namely, it provides minimal expected steady state response energy among
all laws with the given bound on magnitude R. Whilst the proof of optimality was obtained
by a solution to the relevant Hamilton}Jacobi}Bellman PDE [3], it can also be obtained
for other cases by using asymptotic theory for small R, as has been done for the case of
swings in reference [6].

The energy-balance method will now be used to evaluate e$ciency of the generalized
reversed swings control.

4.1. INERTIA-CONTROLLED SYSTEM (14, 16) WITH q"J

The equations are rewritten, by introducing a new state variable p, as two "rst order
SDEs, which are then supplemented with that for the response energy (per unit J

0
):

hQ "
p

[1#R sgn(hp)]
, pR "!X2h#1N (t), where X2"k/J

0
,

H"

p2

2[1#R sgn(hp)]
#

X2h2

2
, HQ "

p1N (t)
[1#R sgn(hp)]

, 1N (t)"J~1
0

1 (t). (17)

The last Stratonovich SDE is transformed to the Ito one, by applying the Wong-Zakai
correction, and the conditional averaging is applied then, with the condition being the
initial values of the state variables at t"0. This results in the deterministic equation for the
conditional expected energy, which describes linear growth of the response energy between
stepwise parameter variations (the notation D is used here for the intensity of the scaled
white noise 16 (t), so that the original white-noise excitation in the RHS of equation (14) has
intensity DJ2

0
) :

HQ "
D

2[1#R sgn(hp)]
, HM "HM (0)#

Dt

2[1#R sgn(hp)]
. (18)

(Whilst these equations are similar to their counterparts (4) for the dry-friction case, the rate
of (linear) energy growth is seen to be di!erent for the two values of J.)

Consider now the variation of the response energy within a half-cycle, which starts
slightly to the right of the system's equilibrium position (after the stepwise drop of the
kinetic energy), so that both state variables are positive at t"0. The random durations of
the half-cycle and quarter-cycles are denoted by H with subcripts 1

2
and 1

4
, respectively, and

additional &&plus'' and &&minus'' subscripts for the quarter-cycles corresponding to the signs
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in the basic generalized reversed swings law (16). The system's energy growth within each
quarter-cycle can be obtained, by applying equation (18), as

HM (H
1@4

!0)"HM (0)#
DH

1@4`
2[1#R]

, and HM (H
1@2

!0)"HM (H
1@4

#0)#
DH

1@4~
2[1!R]

. (19)

The total energy does not experience any changes at the system's extreme positions, whereas
the total energies before and after the stepwise parameter variation at the equilibrium
position are related by the continuity condition for the angular momentum p as

HM (H
1@2

#0)"HM (H
1@2

!0) A
1!R

1#RB . (20)

Combining equations (18}20), one can relate the response energy at the end of the half-cycle
to that at the start of the half-cycle as

HM (H
1@2

#0)"HM (H
1@2

!0) A
1!R

1#RB"GHM (0)#
DH

1@4`
2[1#R]

#

DH
1@4~

2[1!R]H A
1!R

1#RB . (21)

Whilst the response energy varies (randomly) from cycle to cycle, the basic response pattern
repeats itself within all half-cycles, and the unconditional averaging (once again denoted by
angular brackets) may be applied to equation (21). As long as the steady state response H (t)
is a stationary process, its expected value at the instants of zero-crossings by h(t), i.e., at
t"0, t"¹

1@2
, etc., should be a constant, so that

SHM (H
1@2

#0)T"SHM (0)T"
(D/4a

eq
)

2
(1!R) C

1

J1#R
#

1

J1!RD , (22)

as long as SH
1@4$

T"¹
1@4$

"(n/2X) J1#R, where a
eq
"RX/n. (The expected time

between stepwise parameter variations is once again approximated here by the
corresponding natural quarter-periods of the free system (16), (18).)

The overall mean energy may be calculated now as the average-over-the-half-period of
the piecewise-linear conditionally expected energy (19)

SH(t)T"
1

¹
1@2
P

TÇ@È

0

HM (t) dt"p2/ (R), p2"D/4a
eq
, / (R)"(1/2) (J1#R#J1!R).

(23)

The "rst co-factor in the "nal expression for the expected response energy is clearly seen to
correspond to the limiting case R@1, / (R):1. This case can be handled by the asymptotic
stochastic averaging method. The latter also shows that the system behaves as one with
a linear viscous damping, with the &&equivalent'' damping ratio XR/n, and the angular
response is asymptotically Gaussian, so that the response energy has an asymptotically
exponential, stationary probability density. With increasing R, the expected response
energy is seen to decrease from its limiting asymptotic value.

These analytical results are compared in Figure 1 with Monte-Carlo simulation data, as
shown by the dotted line. The dashed line represents scaled expected response energy
SHT/p2, as calculated according to formula (23), whereas the horizontal solid line is its
limiting (unity) value, as obtained by the asymptotic approach. The latter is seen to provide
a reasonable accuracy (within 5%) up to R"0)5, that is far beyond the expected
applicability range of the theory for the supposedly small parameter R. However, the direct
energy balance is seen to provide even better results for the not-too-small values of R, up to
as high as R"0)9.



Figure 1. E$ciency of the inertia control: scaled expected response energy SHT/p2 versus R according to the
analytical solution by the direct energy balance approach (} } } ) and Monte-Carlo simulation ())))))))). The
horizontal line represents the asymptotic (stochastic averaging) value for small R.

Figure 2. E$ciency of the sti!ness control: scaled expected response energy SHT/p2 versus R according to the
analytical solution by the direct energy balance approach (} } } ) and Monte-Carlo simulation for the following
values of the excitation intensity: d, D"10; m, D"1; j, D"0)1. The horizontal line represents the asymptotic
(stochastic averaging) value for small R.
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4.2. STIFFNESS-CONTROLLED SYSTEM (14, 16) WITH q"k

Solution for the expected response energy has been obtained for this case in reference [3]
as

SHT"p2t(R), t (R)"(1/2)[(1#R)~1@2#(1!R)~1@2] (24)

with the same expressions for p and a
eq

as before. These analytical results for SHT/p2 are
represented in Figure 2 by the dashed line, whereas the horizontal solid line represents the
limiting (unity) asymptotic value. Comparison with Monte-Carlo simulation data, shown
by various symbols for three di!erent values of D (and X"1) indicates a reasonable
accuracy of both analytical approaches within the range R(0)4*once again, even for the
not-very-small R's.



Figure 3. E$ciency of the length control for the pendulum (swings): scaled expected response energy
SHT/g¸

0
p2 versus R according to the analytical solution by the direct energy balance approach (} } } )

and Monte-Carlo simulation ())))))))). The horizontal line represents the asymptotic (stochastic averaging) value for
small R.
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4.3. LENGTH-CONTROLLED PENDULUM, OR SWINGS (15, 16) WITH q"¸

Solution for the expected response energy has been obtained for this case in reference [6]
as

SHT/g¸
0
"p2/

L
(R), /

L
(R)"/

0
(R)!(3/2)R (J1#R#J1!R)

!4R[/
0
(R)#3RJ1!R] (1#R)~3@2 [J1#R#J1!R)~1,

p2"DmX2/4a
eq
, Dm"D/g2, a

eq
"3XR/n,

/
0
(R)"(1/2)(1!R) [(1#R)5@2#(1!R)5@2] (1#R2/3)~1, (25)

where Dm is seen to be the intensity of the non-dimensional horizontal support acceleration
in g's. Once again, in the asymptotic case of small R, the system behaves as one with the
linear damping; the equivalent damping ratio, however, is found to be 3 times higher than
that for system (14). This case is represented in Figure 3 by a solid horizontal line at the unit
height, where the scaled expected response energy SHT/g¸

0
p2 is given as a function of R.

The dotted line represents the results of the Monte-Carlo simulations, whereas the dashed
line represents the analytical solution (25). The latter is seen to provide some improvement
of accuracy compared with the asymptotic stochastic averaging approach. This analysis
may be used to evaluate e$ciency of the reversed swings e!ect for controlling oscillations of
load on shipboard cranes in rough seas.

5. CONCLUSIONS

The direct energy balance has proved itself to be an e$cient and accurate approach for
predicting the (non-linear) response of &&piecewise-conservative'' systems to white-noise
random excitations for those cases. The method is certainly not universal. Firstly, it can be
used only for those cases, where a simple estimate of the expected response level (expected
energy) is su$cient for the given application. In particular, the method may be convenient
for estimating the e$ciency of the active feedback control systems, based on the use of
&&bang}bang'' control laws. Such estimates may be used as important benchmarks, in spite
of the fact that in real-life applications a low-pass "lter may be included into the feedback
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loop in order to avoid high-frequency chatter, whereas excitation may not be a white noise
one, but rather just a broadband random process.

Secondly, the present version of the method will not be exact, as long as the expected time
interval between two consecutive stepwise energy variations (&&cycle duration'') is
approximated by a solution for the corresponding free vibration problem. However,
extensive Monte-Carlo simulation studies for a variety of speci"c problems indicate
a reasonable accuracy of the method far beyond the expected applicability range of the
asymptotic approaches*for values of a supposedly small (compared with unity)
non-dimensional parameter up to 0)4 and higher. Furthermore, the approach has a clear
potential for improving its accuracy through the use of higher approximation for the
expected cycle duration.
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